ASP Modeling Report

Jerome Fast
Pacific Northwest National Laboratory

http://www.asp.bnl.gov/ASPmodelingplan.pdf

Overview

Objectives of the Report:

- Summarize ASP modeling activities for DOE clients
- Foster collaborative activities among ASP projects

Report describes:

- Specific modeling activities and their major milestones
- Collaborations in ASP and with other programs
- Needs and future directions of modeling in ASP

Report Status

Contributions:

- 26 ASP scientists responded Thank You!
- Table with brief description of primary activity
- Appendix containing more detailed project objectives
- List of milestones
- Description of collaborative research
- Report finished end of December 2008
 - Corrections and additions?

Part 1: Current Modeling Activities

Organized by Scales

Local Aerosol Property & Process (16)

new data thermodynamic box models & theory models

Local Cloud Property & Process (4)

new data parcel model LES model & theory representations representations

Regional Modeling (7)

uncertainty evaluating parameterization Global Modeling (3) development

emissions evaluating inverse modeling performance

Lots of overlap among these activities

Multi-Scale Approach

Adapted From Ghan and Schwartz, 2007, *Bull. Amer. Meteor. Soc.*Global Climate Models

Relationship with Other Programs

Adapted From Ghan and Schwartz, 2007, Bull. Amer. Meteor. Soc.

Types of Modeling Research

• Model Development:

Design new and/or improved aerosol process modules and implement them into 3-D community models

Forecasting:

Planning and conducting field experiments

Evaluation Studies:

Determine the ability of predictive models to simulate the evolution of observed aerosol properties

Closure Studies:

Constrain a portion of a model with measurements to evaluate a specific aerosol process

Insight Studies:

Use models to address wide range of science questions that cannot be obtained from data alone

Science Questions Related to Models

- Which aerosol processes are represented well or which are poorly represented in models?
- Which aerosol processes lead to large uncertainties in the magnitude and distribution of aerosol radiative forcing?
- What is the best way to better represent fundamental mechanisms associated with new particle formation and aerosol transformation processes?
- Do new treatments consistently improve the predictions of aerosol properties for the right reasons when compared with both laboratory and field experiments?
- What is the most appropriate balance between complexity of aerosol processes an computational efficiency?

Linkages Among Modeling Activities

Three Major Themes

1) Secondary Organic Aerosols

3) Aerosol Optical Properties

2) Cloud-Aerosol Interactions

Linkages Among SOA Activities

Several other SOA efforts as well

Links to Climate Models

Part 2: Needs and Future Directions

Climate models still contain large uncertainties associated with aerosol radiative forcing

IPCC: Radiative Forcing Components

How can ASP *better address* this need?

1. Detailed Aerosol Process Models

Master Chemical Mechanisms Examples Advanced Thermodynamics complexity = Particle Resolved Representations computationally Cloud Resolving Modeling expensive Benchmarks for developing reduced mechanisms not an easy task and new parameterizations **Next Generation** Current **GCMs GCMs**

What about other complex approaches?

2. Enhanced Collaboration

Greater utilization of ASP laboratory & field data:

- Measurements already being used by modelers to some extent, but ...
- Is there some valuable data not being taken employed for model evaluation or parameterization development?

Larger, more integrated projects?

- Integration of university and national laboratory projects
- Issues include: increased planning, timelines among investigators, deliverables complicated if one part is behind schedule or does not pan out

3. Aerosol Modeling Testbeds

 Community approach of objectively comparing performance of new aerosol process modules (see poster)

4. Fully Explore Parameter Space

Current Approach:

- Aerosol process modules compared with limited laboratory and/or field data
- 3-D aerosol models have "short" simulation periods and evaluated using "limited" observational data
- Result: performance is biased towards conditions in either the lab or field data; behavior for a wide range of conditions associated with climate simulations is not assessed

Possible Solution: Longer Simulation Periods

- Parallel to longer-term ASP measurements?
- Seasonal and multi-year simulations for 3-D models
- Result: A better understanding of the uncertainties and behavior of new process modules before they are used for climate studies

5. Global Climate Model Link

Many aerosol process modules developed under ASP are being incorporated into GCMs by other DOE programs and

agencies

- Expand ASP activities to include a GCM of choice ?
 - CAM / CCSM (funded by SciDAC)
 - Global WRF but it's not a true climate model yet
- Liaison with climate modeling community?
- Distinction between regional and global becoming blurred
 - Computer power continues to increase
 - Are GCM parameterizations valid at regional scales?

Summary

- Hopefully, these ideas may prove useful to address ASP planning questions associated with:
 - Aerosol life cycle
 - Aerosol direct effects
 - Cloud-aerosol interactions
- Comments or questions?